Ingham-type Inequalities and Riesz Bases of Divided Differences
نویسندگان
چکیده
We study linear combinations of exponentials en, λn ∈ Λ in the case where the distance between some points λn tends to zero. We suppose that the sequence Λ is a finite union of uniformly discrete sequences. In (Avdonin and Ivanov, 2001), necessary and sufficient conditions were given for the family of divided differences of exponentials to form a Riesz basis in space L(0, T ). Here we prove that if the upper uniform density of Λ is less than T/(2π), the family of divided differences can be extended to a Riesz basis in L(0, T ) by adjoining to {en} a suitable collection of exponentials. Likewise, if the lower uniform density is greater than T/(2π), the family of divided differences can be made into a Riesz basis by removing from {en} a suitable collection of functions en. Applications of these results to problems of simultaneous control of elastic strings and beams are given.
منابع مشابه
A New Approach to Continuous Riesz Bases
This paper deals with continuous frames and continuous Riesz bases. We introduce continuous Riesz bases and give some equivalent conditions for a continuous frame to be a continuous Riesz basis. It is certainly possible for a continuous frame to have only one dual. Such a continuous frame is called a Riesz-type frame [13]. We show that a continuous frame is Riesz-type if and only if it is a con...
متن کاملOn duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules
In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...
متن کاملG-Frames, g-orthonormal bases and g-Riesz bases
G-Frames in Hilbert spaces are a redundant set of operators which yield a representation for each vector in the space. In this paper we investigate the connection between g-frames, g-orthonormal bases and g-Riesz bases. We show that a family of bounded operators is a g-Bessel sequences if and only if the Gram matrix associated to its denes a bounded operator.
متن کاملExponential Riesz bases of subspaces and divided differences
Linear combinations of exponentials e iλ k t in the case where the distance between some points λ k tends to zero are studied. D. Ull-rich [30] has proved the basis property of the divided differences of exponentials in the case when {λ k } = Λ (n) and the groups Λ (n) consist of equal number of points all of them are close enough to n, n ∈ Z. We have generalized this result for groups with arb...
متن کاملNew characterizations of fusion bases and Riesz fusion bases in Hilbert spaces
In this paper we investigate a new notion of bases in Hilbert spaces and similar to fusion frame theory we introduce fusion bases theory in Hilbert spaces. We also introduce a new denition of fusion dual sequence associated with a fusion basis and show that the operators of a fusion dual sequence are continuous projections. Next we dene the fusion biorthogonal sequence, Bessel fusion basis, Hil...
متن کامل